
1次関数のグラフ

傾きと切片

- ・1次関数 *y=<mark>a</mark>x+b* のグラフは 比例 y=ax のグラフをy軸の正の方向にbだけ平行移動させた直線
- ・1次関数 y=ax+b のグラフは<mark>傾きがa</mark>で、切片がbの直線 -a>0で右上がり、a<0で右下がり、y軸との交点(切片)の座標は(0,b)

$$(1)y = \frac{1}{2}x + 1$$

$$(2)y = \frac{1}{2}x$$

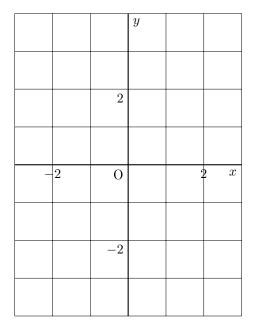
$$(3)y = -x + 2$$

$$(2)y = \frac{1}{2}x$$
 カー カー カー に 1 たける (2)の値 (3) $y = -x + 2$ (4) $y = -\frac{1}{2}x + 1$ ・注目ポイント - 傾き (x 方向と - 切片 (y 軸 との

- ・(1)は(2)をy軸の正の 方向に1だけ**平行移動** →(1)と(2)の直線は平行
- - -<mark>傾き</mark>(x方向とy方向の変化) -切片(y軸との交点)

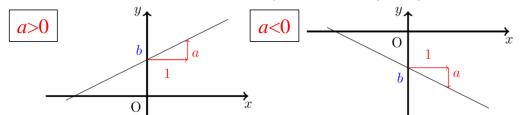
<確認問題>

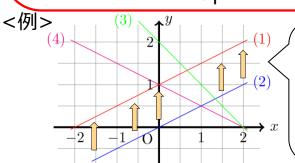
次の1次関数のグラフをかけ。


(1)
$$y = -\frac{1}{5}x + 4$$

(2)
$$y = -x + 1$$

(3)
$$y = 2x - 1$$


(4)
$$y = -\frac{2}{3}x + 1$$



1次関数のグラフ

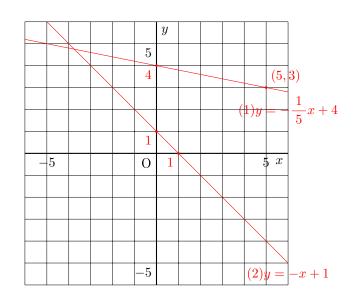
傾きと切片

- ・1次関数 *y=<mark>a</mark>x+b* のグラフは 比例 y=ax のグラフをy軸の正の方向にbだけ平行移動させた直線
- ・1次関数y=ax+bのグラフは傾きがaで、切片がbの直線 -a>0で右上がり、a<0で右下がり、y軸との交点(切片)の座標は(0,b)

$$(1)$$
 $y = \frac{1}{2}x + 1$

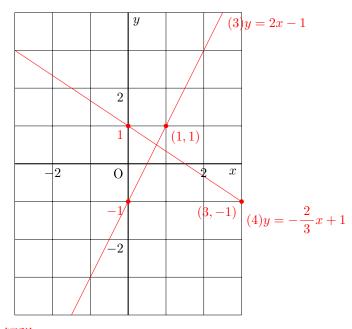
$$(2)y = \frac{1}{2}x$$

$$(3)y = -x + 2$$


- ・(1)は(2)をy軸の正の 方向に1だけ**平行移動** →(1)と(2)の直線は平行
- - -<mark>傾き(</mark>x方向とy方向の変化) -切片(y軸との交点)

<確認問題>

次の1次関数のグラフをかけ。


(1)
$$y = -\frac{1}{5}x + 4$$

(2)
$$y = -x + 1$$

(3)
$$y = 2x - 1$$

(4)
$$y = -\frac{2}{3}x + 1$$

直線を引くためには点が2つ必要なので、 座標が整数である直線上の点を2つ示す。